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Representation of cusps in a hyperspherical basis set 
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The wave functions of Coulomb systems have cusps at points corresponding to two- 
particle coelescences. In this paper, we derive series representing the cusps in terms of 
hyperspherical harmonics multiplied by functions of the hyperradius. When the hyper- 
spherical method is applied to Coulomb systems, the harmonics which appear in these 
series should be included in the hyperangular basis set. 

1. I n t r o d u c t i o n  

The Schr6dinger equation of  a system of  N particles can be written in the form 

[ - ½ A  + V ( x ) -  E]~b(x) = 0 ,  (1) 

where A is the generalized Laplacian operator [1,2]: 

a 02 1 0 ra_l 0 A 2 
A = ~ ffS-.a -- ra-1 Or Or r2 , d = 3N. (2) 

7-- u Juj 

In eq. (2), r is the hyperradius, defined by 

d 

(3/ 
j= l  

while A 2 is the grand angular momen tum operator: 

A 2 = - _ x i - ~ x  j - . (4) 
12>J 

In eqs. (1)-(4), xl ,  x2, ...Xd, d = 3N, are the mass-weighted Cartesian coordinates 
of  the system's N particles. 

One can try to build up solutions to the Schfodinger equation from basis func- 
tions of  the form 
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~n;~u = R ,~(r )  Y;~u(u), (5) 

where Yau(u) is a hyperspherical harmonic [1,2] satisfying 

[a 2 -  A(A + d -  2)] rau(u ) = 0, A = 0, 1,2,. . . ,  (6) 

and where 

x 1 
u -  - ( x l , x 2 , . . . , X d )  (7) 

r r 

is a d-dimensional unit vector. This approach offers many advantages in the treat- 
ment of correlation, since independent-particle approximations are avoided. 
However, a problem arises when hyperspherical harmonics are used as a basis for 
treating systems interacting through Coulomb forces: The wave functions of 
Coulomb systems have cusps at points corresponding to two-particle coalescences 
[3,4]. To represent such cusps accurately, large values of A are required; but for each 
value of A, there are 

(d + 2 A -  2 ) ( d +  A -  3)' 
~o = " (8) 

M(d - 2)! 

linearly independent hyperspherical harmonics, a degeneracy which becomes 
extremely large when A is large. It is therefore interesting to ask exactly which 
hyperspherical harmonics are needed to represent the cusps of a Coulomb system, 
since this knowledge will allow us to achieve good accuracy with a hyperangular 
basis set of moderate size. 

2. Elec t ron-nuclear  cusps 

Let us consider the case of an N-electron atom with a fixed nucleus. Then 

V(x) 
- ;  Iro rb ' 

a = l  

where 

rl =V/X 2 + x ~ + x 3  2, 

,'2 = + + 

i i i  (10) 

In the neighborhood of a point where ra = O, the N-electron wave-function has a 
cusp of the form 
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": e -zr° . (11) 

In order to see how this cusp may be represented in terms of hyperspherical harmo- 
nics, we will try to construct a series of the form 

OO 

g-Zra~_ ~ f;~(r)Y,~a(U). (12) 
A=0,2,.. 

To do this, we will need to make use of some of the properties ofhyperspherical har- 
monics. 

Interestingly, for each of the familiar theorems satisfied by spherical harmonics, 
there is a d-dimensional generalization [1 ]. Thus, for example, hyperspherical har- 
monics obey an orthonormality relation 

f d~2 Y;,,, Yau 5a'a@u, (13) 

where df~ is the generalized solid angle element defined by 

dx  = dxldX2.. .dx d = r a - l  d rd f2  . (14) 

Here # stands for a set of indices labeling the hyperspherical harmonics belonging 
to a particular value of A. Like the familiar spherical harmonics in a 3-dimensional 
space, the hyperspherical harmonics also obey a sum rule: 

y ~  Y;,(u') Y~,(u) - ~ + ~ C;(u. u'). 
. cd(O) 

(15) 

Here 

d - 2  
c~ -= T (16) 

while C~(u- u') is a Gegenbauer polynomial: 

1 ~ 1  (-1)T(c~ + A - t)(2u-u') ;~-2, 

C~(u.u') - P(a) ,=o t!(A 20! 

In eq. (15), I(0) represents the total solid angle: 

(17) 

2~d/2 
I(0) = d a -  I'(~) " (18) 

When d = 3 and c~ = 1/2, eq. (15) reduces to the familiar sum rule for spherical har- 
monics; and in fact, the Legendre polynomials which appear in the familiar sum 
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rule are a special case of Gegenbauer polynomials. In 3-dimensional space, a plane 
wave can be expanded in terms of Legendre polynomials and spherical Bessel func- 
tions; and this expansion has a d-dimensional generalization: 

o o  

e i(klx'+'''+kaxa) = e ikruk'u = ( d -  4)!! ~ ia(d + 2 A -  2)jd(kr)C~(uk . u), 
,~=0 

k 1 
Uk =-- -k - lc (kl,k2, ...,kd), (19) 

where 

p(~)2c~-, ja+~,(kr ) oo (_ a),(kr)2t+,~ 
j~(kr) = ( - d - 7 ~  = ~ (2t)!!~-72-7i+~ - -  2)11 

t=O "" 
(20) 

might be called a "hyperspherical Bessel function"• 
We can use these general properties of hyperspherical harmonics to construct 

the series shown in eq. (12). We begin by remembering that the 3-dimensional 
Fourier transform ofe -zr° is given by 

e_Zro_ 1 i ~/~ 2Z ( 2 ; ) 3 / 2  d 3 k  e 'l~'ra (21) 
71" (k2 -+- g 2 )  2 ' 

where 

l i o : l  dS k = dk k 2 df~k , 

I d O k  --  dCk s i n  Ok dOk . (22) 

We now define a set of d-dimensional unit vectors Wa by 

l (ki,ka,k3,0, O,O,O, O) Wl - ' ~  .-.~ 

1 (O,O,O, kl k2,ks,0, O) Wl ~- -~  ~ -.-, 

1 (0,0,0,0, O, kl k2,k3) WN ~ ...~ ~ , (23) 

so that 

eik'r, = eikru'wa (24) 
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where u is defined by eq. (7). Then from (19) we have 

Oo 

e &'r" = ( d - 4 ) ! !  ~ i~(d + 2A - 2)j~(kr)C~(u. Wa). (25) 
A=0 

Substituting (25) into (21), we obtain 

e-Zr, (d-4)!'Z~-,i;~(d fo°°dkk2jd(kr) f - ~r ~ ~ + 2A - 2) dak C~'(u. w~) (26) 
~=0 ( k2 + Z 2 )  2 " 

The function 

1 . /  
U~(u) ~ ~ d~k C~(u-w~)  (27) 

is an eigenfunction of the generalized angular momentum operator A 2, since, f rom 
eqs. (6) and (15), we have 

[A 2 - k(k + d -  2 ) ]C; (u -Wa)  = 0, (28) 

so that  

af A2 U;(u) - ~ df2k A2C;(u . w~) = A(A + d - 2) U~(u). (29) 

The integration over df2k in (27) can be carried out explicitly, using the fact that  
(for example) 

1 
u -  w l  = - (xl cos Ok COS Ck + x2 COS Ok sin Ck + X3 sin Ok). (30) 

r 

From (22) and (30) we obtain 

1 /d~k(2U.Wa);~_2t 1 (2ra~ ~-2t [~rdOksinOk(COSOk);~_2t 
= ~ , ,  r / Jo 

= ~ r /  , A = e v e n ,  (31) 
0, A = odd. 

Thus, from the definition of the Gegenbauer  polynomials,  we have for even A 

A/2 / 0 ~  \ A-2t 

U;(u) = b~,t--/- , (32) 

where 

( - 1 ) ' p ( ~  + ~ - t) 
ba,t =- p(cOt!(A _ 2t + 1)! " (33) 
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The odd values of A do not enter the series shown in eq. (26) because the integral 
in eq. (31) vanishes when A is odd. ~ 

Apart from a normalization constant, Uy,(u) is the special hyperspherical har- 
monic which we need for the series of eq. (12). The normalizing constant can be 
found by making use of the sum rule for hyperspherical harmonics and the defini- 
tion of the Gegenbauer polynomials, from which it follows that 

(47r)2 fda~[~-~fdaC~(u Wa)C~(u W/a)] I(o) / dalV~(u)12 = f dak . . 

_ + a / dak f da,~Cd(wo . w'o) 

[V21(-1)tV(A +a-t )  
- (,~ + , ~ ) r ( ~ )  t!(,~ - 2 0 !  

x / df2k f df2k, (2w,~-w'a) "x-2t . (34) 

But 

' 1--~-k- k' = cos0k (35) wa " w a = kl k 

so that 

/ df~k / d f ~ k , ( W a "  - -  (47r)2 (36) 
W~a):~-2/ 3, - 2t + 1 

Therefore 

[a/2I 
1 f df~lU~(u)[ 2 a Z A-2t - b ~ , , ( 2 )  , 

I (0)  ~ + c~ t=o 
(37) 

where b,~,t is defined by eq. (33). Eq. (37) can be simplified by noticing that 

1 [(a+l)/21(-1)tF(A+a-t)(2~)a+l-2' 
C~+~(() - r(c~ - 1) ~ t ! (A-  2t + 1)! t=0 

(38 )  

Comparing eqs. (37) and (38), and making use of the fact that [1] 

( A + d - 4 ) !  
C;+~(1) = (A-+-]-)~d- 5)! '  (39) 

we can rewrite (37) in the form 
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1 fdalU (u)f- a (A+  d -  4)! (40) 
I(0) J (A + a)(A + 1 ) ! (d -  4)! " 

From (40) and (32) it follows that the special hyperspherical harmonics needed 
for representation of the cusp e -zr° are given by 

- ~ /2ra\  A-2t 
Y,~a(U) = JV't~=ob,x,t~--~- ) , (41) 

where 

/(A + a)(A + 1)!(d - 4)! 
JV = V a-I-~-A-q--d~-4-)! (42) 

Using the fact that 

dr2 ra,~(u) Ya~(u) = 6a,a (43) 

we can obtain from (12) the relationship 

fa(r) = f df~ raa(U)e -zr" . (44) 

Then, since 

%-'°° ( -Zr)"  (ra~ n e-Zr, (45) 
z_~ n! \ r ]  n=O 

eqs. (41)-(44) give us a Taylor series representation offa (r): 

OO 

f~(r) = Z c"r~' (46) 
n=0 

where 

Cn i m 
A/2 f (ra~,X+n_2 t 

( - z )n 'N"  Z b~'tZJ~-2t df~, , r  / (47) 
n !  t=0 

The hyperangular integral in (47) can be evaluated explicitly, since [17] 

1 
I ( o ) / d f ~ ( ~ ) " - F ( 3 ) F ( ~ 2 a )  " (48) 

For all values of A except A = 0, the coefficient co vanishes in the Taylor series of 
eq. (46). This can be seen from eqs. (43)-(45), since from (43) we have 
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f d~2 Yaa(u) = 0, A ¢ 0, (49) 

while from (44) and (45) we have 

(50) 

From (49) it follows that the leading term in (50) vanishes when A ~ 0. When 
A = 0, eqs. (41) and (42) yield 

1 
Y0a(u) = A f =  (51) 

vOT  
and (50) becomes 

-- A/'I(0)I f [1 Zr(~.) + ...] . (52) f0(r) j df~ - 

Then, with the help of(48), we obtain the leading terms: 

f0(r) = A ;  -1 1 p (3)p(d+l~Zr+  . . . .  (53) 

A second approach to the radial functions, fa(r), is through evaluation of the 
k-integral in eq. (26). F rom (12), (26) and (27) we have 

f,\(r) = 2ZN'- ' i~(d-4)!! (d  + 2 A -  2) -2 [°°dk  k2j~(kr) (54) 
7r J0 (k 2 -Jr- Z 2 )  2 " 

Using eq. (20), we can expressj~(kr) in terms of ordinary Bessel functions: 

P (oe)2 a-l  Ja+:~ (kr) (55) 
j~(kr) = (d - 4)!!(kr) a ' 

where a is defined by eq. (16). Thus 

= 2) 2~+1 [oo t2-aja+a(t)  
f~(r) ZrP(a)N'-lia(d + 2 A -  - -  dt . (56) 

71- J0 (t 2 q- Z2r2) 2 

The integral in (56) can be evaluated in terms of hypergeometric functions using 
Gradshteyn and Ryzhik's  eq. 6.565(8) [5], or by numerical integration. 

The radial functionsfa(r)  for A = 0, 2, 4, 6, 8, 10 are illustrated in Figs. 1-3. The 
functions shown in the figures correspond to d = 3N = 9. The functions were eval- 
uated by numerical  integration of (56) for large values of r, and using the series 
defined by eqs. (46)-(48) for small values of r. As we would expect from eq. (50), 
f0(0) = N "-I , while for A ¢ 0,f~(0) = 0. 
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Figs. 1 and 2. These figures show the hyperradia l  functions AfLfx (r) l of eq. (56) for the first few values 
of  A. Because of  the factor i ~, the functions al ternate in sign,f0 (r) being positive for 0 < r < c~, while 

f2 (r) is negative, and so on; but  in the figures we show the absolute values of  the functions. 
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I I I I I ~ I 

2 3 4 5 6 7 8 9 

Fig. 3. This figure shows ln[AfLfa(r)l ]. It can be seen from the figure that for large values of the hyperra- 
dius, r, the functions [f~(r)l have an almost exponential behaviour. One can also see from this figure 

that the functions fall off rapidly in magnitude with increasing values of A. 

3. Electron-electron cusps 

For high accuracy, it is necessary to include in our basis set the harmonics 
Y~a(u), which are needed for a good representation of the electron-nuclear cusps; 
but this is not enough: We must also include the functions which are needed for a 
good representation of  the cusps which occur at electron-electron coalescences, as 
has been emphasized by Morgan [4]. The representation of electron-electron cusps 
can be considered as a special case of a more general question: Can we represent an 
arbitrary function of the interparticle distance r~b, 

g(rab) -- g(lra -- rbl), (57) 

as a series of hyperspherical harmonics multiplied by functions of the hyperradius? 
We can, in fact, do this, using a method almost identical to eqs. (21)-(56). In this 
way we obtain the series 

O < 3  

g(rab)= ~ ga(r)Y~(ab)(U), (58) 
A=0,2,... 

where 
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and 

rA(ab) (U)  = 
t=0 

gx(r) = N'-l i~(d-4)!!(d + 2 A -  2) dk k2jd(x/2kr)gt(k). 

(59) 

(60) 

In eqs. (58)-(60), ba,, and Af are defined by eqs. (33) and (42), while gt(k) is the 
Fourier transform of the function g(rab): 

gt(k) = drab r]ajo(krab)g(rab) , (61) 

j0 being a spherical Bessel function. The harmonics in eq. (59) are normalized in 
such a way that 

f da (u) (u) = YA'(ab) Ya(ab) (62) 

However, two harmonics corresponding to the same value of A but to different 
values of the particle indices are not orthogonal: 

f d~ Y~(ab)(u) Y~(~d)(U) (63) ¢ 0. 

It is interesting to notice that in the series of eqs. (58)-(61), the harmonics 
Y~(ab) (U) are independent of the form ofg(rab). Thus, for example, any potential of 
the form 

N N 

V(x) = E ~-~g(rab) (64) 
b>a a 

can be represented by a series of the form 

oo N N 

V(x) : ~ g ~ ( r ) ~  Y~(ab)(u). (65) 
A=0,2,... b>a a 

Since the A-projection of the potential is a "potential harmonic" of the type intro- 
duced into nuclear physics by Fabre de la Ripelle [6,7], eq. (67) shows us that the 
harmonics needed for accurate representation of electron-electron cusps are clo- 
sely related to potential harmonics. 

We conclude from the present study that harmonics of the type Yaa(u) (eq. (41)) 
and Ya(ab) (u) (eq. (59)) should be included in the basis set when the hyperspherical 
method is applied to Coulomb systems. 
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